Performs parameter estimation by fitting model simulations to observed data. Supports customizable optimization and confidence interval methods.
Active bindings
- simulations
- A named list of - Simulationobjects, keyed by the IDs of their root containers.
- parameters
- A list of - PIParameters, each representing a grouped set of model parameters to be optimized (read-only).
- configuration
- A - PIConfigurationobject controlling algorithm, CI estimation, and objective function options.
- outputMappings
- A list of - PIOutputMappingobjects mapping observed datasets to simulated outputs.
Methods
Method new()
Initializes a ParameterIdentification instance.
Usage
ParameterIdentification$new(
  simulations,
  parameters,
  outputMappings,
  configuration = NULL
)Arguments
- simulations
- A - Simulationor list of- Simulationobjects to be used for parameter estimation. Each simulation must contain the model parameters specified in- parameters. Use- ospsuite::loadSimulation()to load simulation files.
- parameters
- A - PIParametersor list of- PIParametersobjects specifying the model parameters to optimize. Each- PIParametersobject may group one or more underlying model parameters. See- PIParametersfor details.
- outputMappings
- A - PIOutputMappingor list of- PIOutputMappingobjects mapping model outputs (represented by- Quantityobjects) to observed data. #' See- PIOutputMappingfor details.
- configuration
- (Optional) A - PIConfigurationobject specifying algorithm, CI method, and objective function settings. Defaults to a new configuration if omitted. See- PIConfigurationfor configuration options.
Method run()
Runs parameter identification using the configured optimization
algorithm. Returns a structured piResultsobject containing estimated
parameters, diagnostics, and (optionally) confidence intervals.
Returns
A PIResult object containing the optimization results.
Estimate Confidence Intervals
Method estimateCI()
Computes confidence intervals for the optimized parameters
using the method defined in the associated PIConfiguration. Intended
for advanced use when autoEstimateCI was set to FALSE during the
initial run.
Returns
The same PIResult object returned by the run() method,
updated to include confidence interval estimates.
Plot Parameter Estimation Results
Method plotResults()
Re-runs model simulations using the current or specified parameter values and generates plots comparing predictions to observed data.
Arguments
- par
- Optional parameter values for simulations, in the order of - ParameterIdentification$parameters. Use current values if- NULL.
Returns
A list of ggplot2 plots (one per output mapping), showing:
- Individual time profiles 
- Observed vs. simulated values 
- Residuals vs. time Perform a Parameter Grid Search 
Generates a grid of parameter combinations, computes the OFV for each, and optionally sets the best result as the starting point for s subsequent optimization.
Note: The resulting grid can be used to explore the parameter space or initialize better starting values.
Method gridSearch()
Usage
ParameterIdentification$gridSearch(
  lower = NULL,
  upper = NULL,
  logScaleFlag = FALSE,
  totalEvaluations = 50,
  setStartValue = FALSE
)Arguments
- lower
- Numeric vector of parameter lower bounds, defaulting to - PIParameterminimum values.
- upper
- Numeric vector of parameter upper bounds, defaulting to - PIParametermaximum values.
- logScaleFlag
- Logical scalar or vector; determines if grid points are spaced logarithmically. Default is - FALSE.
- totalEvaluations
- Integer specifying the total grid points. Default is 50. 
- setStartValue
- Logical. If - TRUE, updates- PIParameterstarting values to the best grid point. Default is- FALSE.
Method calculateOFVProfiles()
Usage
ParameterIdentification$calculateOFVProfiles(
  par = NULL,
  boundFactor = 0.1,
  totalEvaluations = 20
)Arguments
- par
- Numeric vector of parameter values, one for each parameter. Defaults to current parameter values if - NULL, invalid or mismatched.
- boundFactor
- Numeric value. A value of 0.1 means - loweris 10% below- parand- upperis 10% above- par. Default is- 0.1.
- totalEvaluations
- Integer specifying the total number of grid points across each parameter profile. Default is 20. 
Method print()
Prints a summary of ParameterIdentification instance.