Changelog
Source:NEWS.md
ospsuite.parameteridentification 2.1.0
Breaking changes
- ´ospsuite.parameteridentification
now requiresospsuite.utils` version >= 1.7.0. - ´ospsuite.parameteridentification
now requiresospsuite` version >= 12.2.0. - Optimization and CI results are now returned as a
PIResultobject instead of a list. This provides a unified structure and new helper methods for summaries and export (#196).
Major changes
- Optimization backend refactored for improved robustness. No changes to the user interface (#161, #186).
-
PIOutputMapping: new$setDataWeights()method for assigning weights to observed data sets and individual data points (#178). - New confidence interval methods
PL(profile likelihood) andbootstrapare now supported viaPIConfiguration(#167, #186, #188, #189, #190). - New
PIResultsupports$print(),$toDataFrame(), and$toList()methods for summaries, export, and diagnostics (#196).
Minor improvements and bug fixes
- Improved print outputs for all classes (#171).
- All classes do not inherit from
ospsuite.utils::Printableany more (#171). - Default settings for CI methods are provided through
CIOptions_Hessian,CIOptions_PL, andCIOptions_Bootstrap(#167). - Supports
ArithmeticStdDevandGeometricStdDeverror types passed in the observedDataSetasyErrorType. This has an effect whenresidualWeightingMethod = "error"is set viaPIConfiguration$objectiveFunctionOptions(#181). - Harmonized CI output naming:
sd,se,cvandrseare now used consistently and correctly (#191). - Improved Hessian-based confidence interval estimation: covariance matrix scaled for SSR objective functions (#192).
- Optimization and CI estimation validated against PK-Sim results for the Aciclovir model, confirming correctness of estimates (#193).
- Confidence interval estimation can be disabled by setting
piConfiguration$autoEstimateCI <- FALSE; it can then be run explicitly withParameterIdentification$estimateCI()(#196). - New vignette on confidence intervals, covering available methods, configuration, and result inspection (#198).
- New vignette on data mapping, including adding data weights and set data transformation (#199).
-
PIResultstorescostDetailsfrom the best (minimum modelCost) evaluation rather than the last, ensuring correct output when runs are limited or stop early (#206).
ospsuite.parameteridentification 2.0.2
Major changes
-
ParameterIdentification$gridSearch()andParameterIdentification$calculateOFVProfiles()are made available and refactored for robustness, clarity, and efficiency (#151).
Minor improvements and fixes
-
ParameterIdentificationwill validate observed data availability inPIOutputMappingduring initialization (#145). - Cache Simulation ID in
PIOutputMapping(#146). -
PIOutputMappingwill attempt to retrieve the molecular weight for unit conversion when adding observed data (#147). -
ParameterIdentificationnow differentiates between simulation failures during the first iteration (stopping optimization) and subsequent iterations (returning infinite cost structure) (#148). - Simulation failure in
gridSearchandcalculateOFVProfilewon’t break evaluation and returnInffor specific parameters (#153). - Robust Hessian epsilon calculation in
ParameterIdentification(#160).
ospsuite.parameteridentification 2.0.1
Breaking changes
- Function
getSteadyStatehas been removed in favor ofgetSteadyStatefrom the {ospsuite} package (#128). - Function
validateIsOptionhas been removed in favor ofospsuite.utils::validateIsOption(#130).
ospsuite.parameteridentification 2.0.0
Breaking changes
PIConfigurationnow configures the objective function viaobjectiveFunctionOptions. Users can specify options directly, includingobjectiveFunctionType,residualWeightingMethod,robustMethod,scaleVar, andlinScaleCV(#100).ParameterIdentification$gridSearch()andParameterIdentification$calculateOFVProfiles()functions have been disabled until fixed (#91, #92).
Major changes
-
New
calculateCostMetrics()function inParameterIdentificationenhances model evaluation with integrated configuration viaPIConfiguration. Settings and defaults are specified inObjectiveFunctionOptions(#64, #65, #100).-
objectiveFunctionType:lsqfor least squares orm3for censored data maximum likelihood estimation. -
residualWeightingMethod: options includenone,stdnormalizes by standard deviation for variable data,meanscales by mean for diverse magnitudes, anderrorweights by inverse variance for known error data. -
robustMethod:nonefor uniform treatment,huberorbisquarefor outlier minimization. -
scaleVar: A boolean indicating whether to scale residuals by the number of observations. -
linScaleCV: Numeric coefficient used to calculate standard deviation for linear scaling, applied tolloqvalues whenm3method is used. -
logScaleSD: Numeric standard deviation for logarithmic scaling, applied tolloqvalues whenm3method is used.
-
New
error-calculationvignette, explaining error model methodologies within the ospsuite.parameteridentification package. The document elaborates on the lsq (Least Squares Error) and m3 (Extended Least Squares Error for censored data) error models, along with advanced customization options for error modeling. This resource aids users in refining their parameter identification processes. (#102, #111).New
optimization-algorithmsvignette, introducing algorithms available for parameter estimation and offering insights on their optimal application scenarios (#104, #111).New
user-guidevignette on parameter identification (PI). This vignette provides a comprehensive overview for setting up PI tasks, including defining simulations, specifying parameters to be identified, mapping model outputs to observed data, and configuring optimization tasks. Examples across three complexity levels of models demonstrate the package’s functionality in detail (#48).New
plot.modelCost()function for visualizing raw and weighted residuals frommodelCostobjects (#100).Comprehensive overhaul of documentation, for clarity, comprehensiveness, and ease of navigation for all users (#111).
Unit test overhaul and coverage enhancement, increasing from 67% to 85% (#99, #100, #113).
Minor improvements and fixes
Enhanced error handling now ensures
ParameterIdentificationtasks validate the existence of simulation objects referenced byPIParametersandOutputMappingto prevent runtime errors due to missing dependencies (#117, #120).Enhanced
calculateCostMetrics()output inParameterIdentificationoffers a more detailed results summary for model evaluation. The summary now includesmodelCost,minLogProbability, and acostVariablesdataframe withscaleFactor,nObservations,M3Contribution,SSR(sum of squared residuals),weightedSSR,normalizedSSR, androbustSSR(#100).README file conversion to .rmd format and subsequent updates (#86, #93).
Improved error handling in
ParameterIdentificationfor cases of simulation failure, ensuring consistent and informative error cost structure in output (#66, #70, #100).validateIsOption()ensures user-specified options adhere to defined constraints, enhancing the robustness of user inputs (#100).ParameterIdentificationnow directly accesses default optimization algorithm options forBOBYQA,HJKB, andDEoptimfrom their respective packages (nloptr,{dfoptim}, and DEoptim) if not explicitly defined inPIConfiguration(#48, #81).Continuous Integration/Continuous Deployment pipeline improvements (#95, #106, #110)
ospsuite.parameteridentification 1.3
Breaking changes
- The parameter in the
PIConfigurationclass that is controlling the feedback at each function evaluation is now calledprintEvaluationFeedbackinstead ofprintItera tionFeedback.
Major changes
Added new optimization algorithms: the default local algorithm is now an implementation of the BOBYQA algorithm (bounded optimization by quadratic approximation) from the nloptr package; additional local algorithm is
HJKB, a bounded implementation of the Hooke-Jeeves derivative-free algorithm from the{dfoptim}package; a global algorithm isDEoptimfor differential evolution optimization.FME::modCost()is re-implemented as part of the parameter identification package and used for calculation of residuals.
ospsuite.parameteridentification 1.2
Breaking changes
- requires ospsuite v11.1 or later.
Minor bug fixes and improvements
-
getSteadyState()accepts steady state time individually for each simulation.